

Donnons au sang le pouvoir de soigner

Innovations en biomédecine : impact sur le don de sang

efs.sante.fr

Production de globules rouges in vitro

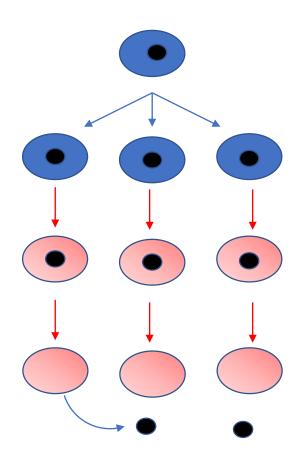
Production de plaquettes in vitro

Globules rouges (et organes) universels

Transporteurs d'oxygène

Thérapeutiques réduisant les besoins de transfusion

Production de globules rouges in vitro

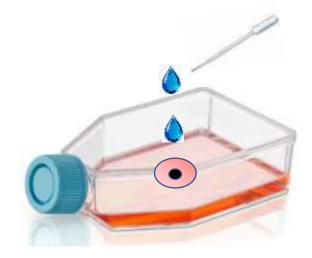

Comment fabrique-t-on ces globules rouges?

- Prélèvement de cellules souches CD34+ (sang, moelle osseuse) naturels ou immortalisés (IPs)
- Multiplication des cellules souches en laboratoire
- Transformation des cellules souches vers les globules rouges grâce à des facteurs de croissance

- Maturation (énucléation)
- Purification des globules rouges avant utilisation

En 20 jours → 10 ml (60 milliards de GR)

1 CGR: 300 ml (2000 milliards de GR)

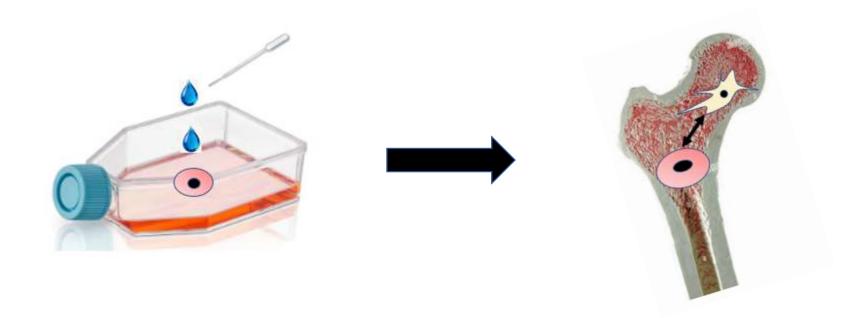


Les avantages potentiels

- Globules rouges « sur mesure » pour chaque patient
 - Sang rare :
 - soit à partir CSH d'un donneur « sang rare » (du patient même à transfuser),
 - soit à partir de CHS avec GS modifié
- Globules rouges qui pourraient durer plus longtemps dans le corps
 - GR prélevés dans une poche ont des âges différents (DDV : 28J : à 28j restent 50% de la poche)
 - GR in vitro ont tous le même âge au moment de la production (DDV potentielle plus élevée)
- Réduction du nombre de transfusions nécessaires
 - Cette longévité permettrait d'espacer les transfusions chez les patients chroniques (drépanocytose, thalassémie),
 - → limitant les risques de surcharge Fer et d'allo immunisation
- Moins de risques de maladies transmises par le sang
 - Processus de culture en milieu contrôlé, éliminant les risques de transmission virale (Hépatites) ou parasitaire (paludisme)

Les défis à relever

- Produire suffisamment de cellules pour une transfusion complète :
 - 10 ml en 21 jours (RESTORE) → Production encore limitée à petite échelle
 - Obstacles techniques
 - qualité du « up scaling » gros incubateur
 - ajout des facteurs au bon endroit au bon moment
 - Obstacles économiques (100 fois plus cher que le don traditionnel)


Garantir l'efficacité et la sécurité des globules rouges

- Énucléation incomplète, déformabilité membranaire incomplète, dégradation accélérée de Hb en milieu artificiel
- Risque mutagène dû à la prolifération prolongée de cellules souches
- Premiers essais chez l'humain → Comparaison de survie et fonction de GR
 - GR produits *in vitro* et **naturels** d'un **même** donneur
 - injectés chez un **même** receveur
 - 2 volontaires

 Résultats attendus fin 2025

Les défis à relever

- Réflexions EFS PACA-Corse : amélioration rendement / qualité
 - Passage d'un incubateur au milieu naturel, la moelle ossuese
 - Culture en 3D
 - Construction d'organoïdes comprenant toutes les cellules de la niche érythroïde dans la structure osseuse
 - Facilitation des interactions Cellules-Cellules et Cellules-Stroma
 - Homogénéisation qualité et bon moment dans l'action directe et l'action des facteurs de croissance

Les défis à relever

Respecter l'éthique

- Accord explicite des donneurs CSH ou IPS,
- Transparence sur les risques potentiels de mutagenèse
- Équité d'accès aux thérapies : Coûts prohibitifs
- Dilemmes philosophiques :
 - Naturalité vs artificialité
 - La création de GR « sur mesure » interroge la frontière entre thérapie et optimisation humaine,
 - Brevetabilité du vivant

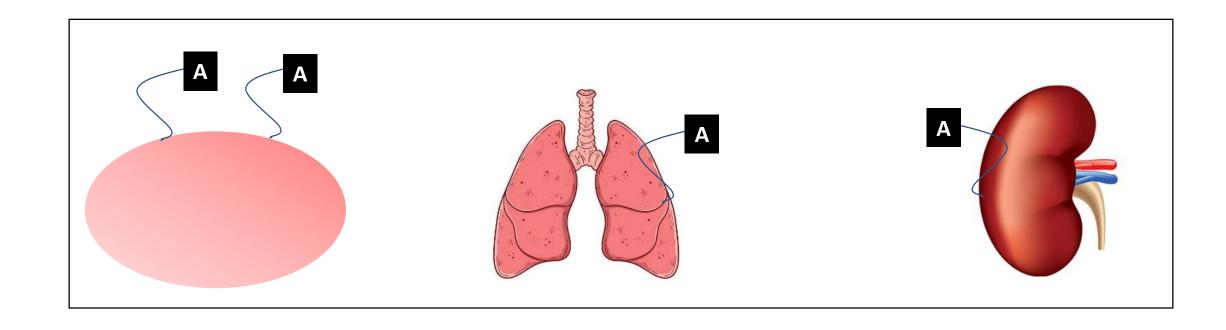
Substitution aux GR humains : pas avant 10 ans / que dans certains cas → Continuer à donner votre sang

Production de plaquettes in vitro

Production sur le même principe que les GR

CSH → mégacaryocytes → fragmentation → plaquettes

- 1 mégacaryocyte naturel → 3000 plaquettes
- 1 mégacaryocyte in vitro → 300 plaquettes

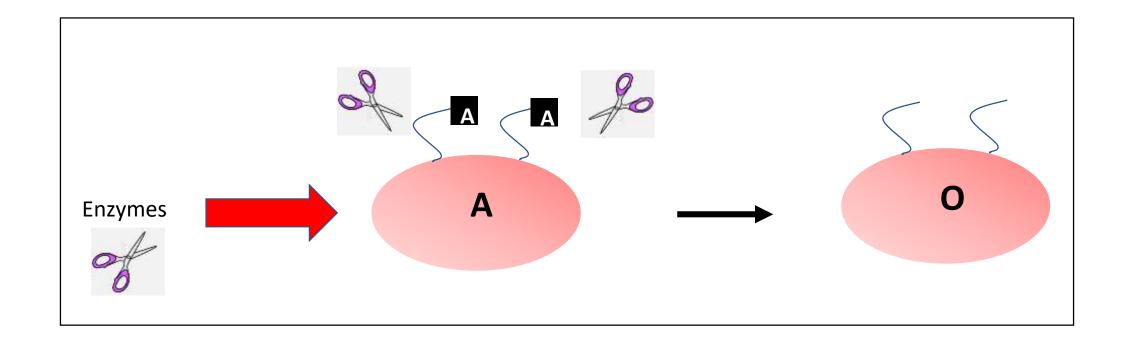

Les défis

- Quantité
- Qualité : plaquettes trop grosses, équipement enzymatique en question
- Amélioration de la fragmentation
 - **EFS Grand Est** : introduction de la fragmentation mécanique par des microfluides reproduisant les turbulences naturelles
- Les essais cliniques qu'au stade de la construction au Japon
 - → continuer à donner votre sang

Globules rouges (et organes) universels

Les groupes sanguins ABO

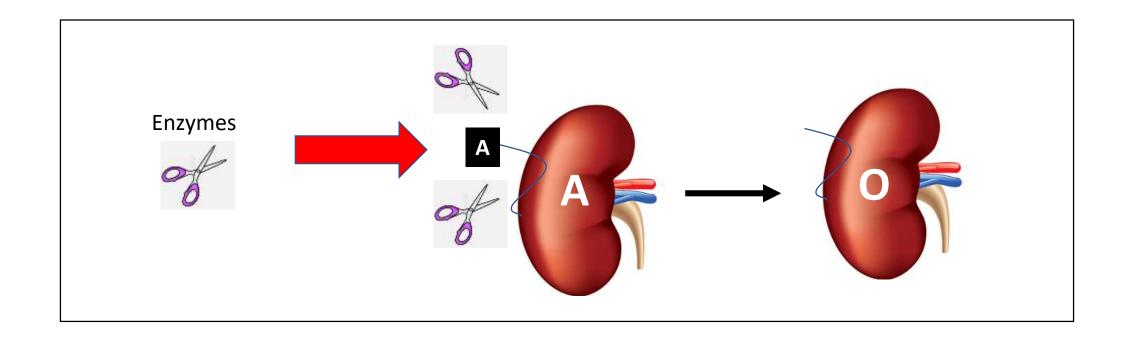
- Sucres
- Présents sur les globules rouges s'oppose à la transfusion incompatible :
 - malheureusement encore d'actualité → Les erreurs de patients persistent !!!!!!!!
- Présents aussi sur les tissus :
 - véritable groupes tissulaires s'opposant à la transplantation incompatible


Recherche sur les possibilités de transformation de globules rouges qui sont A/B en O

nature microbiology

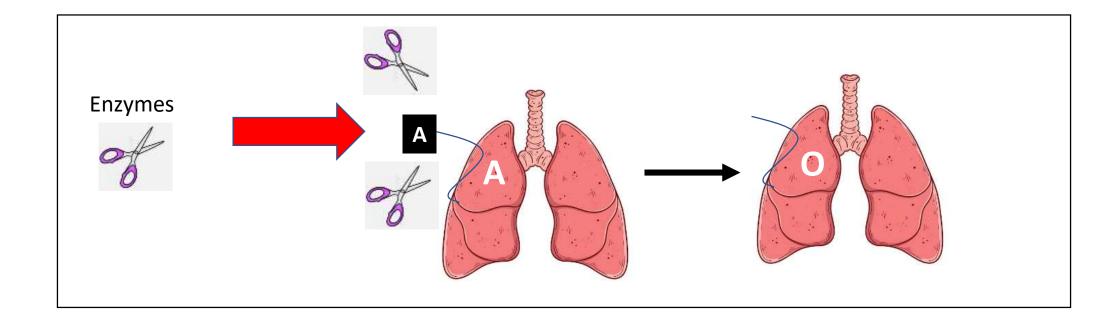

Akkermansia muciniphila exoglycosidases target extended blood group antigens to generate ABO-universal blood

Mathias Jensen


- Amélioration des stocks
- Expérimentation animale

Recherche sur les possibilités de transformation de reins qui sont A/B en O

- Expérimentation in vitro et animale
- Augmente le nombre de donneurs compatibles



Recherche sur les possibilités de transformation de poumons qui sont A/B en O

Science Translational Medicine * VIVO enzymatic treatment converts blood type A donor lungs into universal blood type lungs

SCHOOL DRANGENDANG MEDICINE 1 (1/1/10/2002) 1 Not 14 hours 200

- Expérimentation in vitro et animale
- Augmente le nombre de donneurs compatibles

Transporteurs d'oxygène

Type de transporteur	Origine/Exemple	Utilisation médicale actuelle/urgence
Solutions d'hémoglobine (HBOC)	Humaine, bovine, recombinante, vers marins, tabac transgénique	Choc hémorragique, chirurgie, situations sans sang compatible, recherche clinique
Perfluorocarbures (PFC)	Emulsions chimiques	Hémodilution, infarctus, circulation extracorporelle, recherche clinique

Thérapeutiques réduisant les besoins de transfusion

- Thérapie génique drépanocytose
 - Par addition génique :
 - Patient SS → CSH SS → Gène HbA (Lentivirus) → CSH A/S → Greffe → Patient AS
 - Libération gène HbF (couper BCL11A)
 - Foetus: HbF « aspire » O2 de HbA de la mère
 - NNé normal : extinction HbF par gène inhibiteur → « allumage » HbA qui prend le relais
 - NNé Drépanocytaire : extinction HbF par gène inhibiteur → « allumage » HbS qui prend le relais → Drépanocytose
 - NNé Drépanocytaire → CSH SS → coupe gène inhibiteur CRISPR-Cas9 → CSH F/S → Greffe → Patient 70% HBF/30% HbS
 - Essais sur plusieurs patients : efficace (↓CVO et ↓TS) mais Coût (1 million) et effets et stabilité à long terme ??
 - Immunothérapie en cancérologie
 - ChimioTRT moins aggressives → moins besoin de transfusion
 - LMNH réduction de 50% de support transfusionnel

Au total même si les avancées sont là

- la substitution total au sang humain n'est pas pour demain
- même si diminution de consommation de rouge stabilité des plaquettes ambition plasma forte ++++
- la seule usine qui produit ce liquide précieux est la générosité humaine
- Continuer à donner votre sang pour de nombreuses années à venir
- MERCI pour nos malades